IPC-2581 Revision C: Complete Build Intent for Rigid-Flex


Reading time ( words)

With the current design transfer formats, rigid-flex designers face a hand-off conundrum. You know the situation: My rigid-flex design is done so now it is time to get this built and into the product. Reviewing the documentation reveals that there are tables to define the different stackup definitions used in the design. The cross-references for the different zones to areas of the design are all there, I think. The last time a zone definition was missed, we caused a costly mistake.

Continuing to review the design documents, I verify that the bend locations are defined with information about the radius of the bends with a detail about how the final product looks when all bending is complete, ensuring that the folds are made in the correct order. I hope all information is contained in the documentation, and there will be no calls from the fabricator delaying the product. With all these documents and details left open to interpretation, there must be a way to send this data more intelligently.

Enter IPC-2581 Revision C
There is a way to transfer this data digitally, reducing the need for various forms of drawing details in a document. The new IPC-2581 Revision C format eliminates the need to manually—and painstakingly—create these details in a fabrication drawing. It uses the design data to explicitly define the multiple aspects of a rigid-flex design. How? Let’s look at how some of the details are sent digitally.

First, let’s look at stackup and general board structure. In the design tool, the different stackup details are created, with one or more rigid stackup definitions (8-layer vs. 4-layer, etc.) as well as several flex stackup structures (1 or 2 copper layers, etc.). In my design database a boundary is defined and the stackup data is assigned to those boundaries. This data is then placed into the IPC-2581C format containing the links of each stackup to each boundary association. These are known in IPC-2581 terms as stackup groups assigned to stackup zones. A by-product of these connections is the ability to define the outline profile for each copper and dielectric layer, a key tool for the fabricator.

To read this entire article, which appeared in the March 2021 issue of Design007 Magazine, click here.

Share




Suggested Items

DFM 101: Final Finishes: OSP

03/09/2023 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is not understanding the cost drivers in the PCB manufacturing process. The next final finishes to discuss in this series is OSP. As with all surface finishes there are pros and cons with the decision of which to use. It is a combination of application, cost, and the properties of the finish. OSP is RoHS-compliant as there is zero lead content in the finish.

DFM 101: Final Finishes—HASL

02/14/2023 | Anaya Vardya, American Standard Circuits
One of the biggest challenges facing PCB designers is not understanding the cost drivers in the PCB manufacturing process. This article is the latest in a series that will discuss these cost drivers (from the PCB manufacturer's perspective) and the design decisions that will impact product reliability.

Advanced Packaging Means Advanced Routing Issues

01/26/2023 | Kris Moyer, IPC
In today’s ever-shrinking world of electronics designs, the use of BGA parts with very fine pitch features is becoming more prevalent. As these fine-pitch BGAs continue to increase in complexity and user I/O (number of balls), the difficulty of finding escape routes and fan-out patterns increases. Additionally, with the shrinking of silicon geometry leading to both smaller channel length and increased signal integrity issues, some of the traditional BGA escape routing techniques will require a revisit and/or adjustment to allow for not only successful fan-out, but also successful functioning of the circuitry of the BGA design.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.