Wearable Device Quantifies Tissue Stiffness While Preserving Surgeon’s Sense of Touch


Reading time ( words)

Researchers have developed the first wearable probe that enhances the sense of touch by imaging and quantifying the stiffness and elasticity of biological tissue. The device is being developed to improve the surgical removal of breast cancer and might also be useful for brain and liver surgery and other types of cancer.

Image Caption: A new wearable probe enhances the sense of touch by imaging and quantifying the stiffness and elasticity of biological tissue. The device could help improve the surgical removal of breast cancer and other types of cancer. Credit: Rowan W. Sanderson, University of Western Australia

In The Optical Society (OSA) journal Biomedical Optics Express, researchers from the University of Western Australia (UWA) describe the new device, which incorporates a fiber probe into a wearable thimble.

During breast conserving surgery, the most common surgical treatment for breast cancer, surgeons touch and compress tissue to confirm that the stiffer cancerous tissue was removed. Histopathological testing is then performed days later to ensure that the whole tumor was removed. Today, 20-30% of patients undergoing this type of surgery require another procedure because the histopathological tests show that cancerous cells remain.

“Our new probe aims to enhance the surgeon’s subjective sense of touch through quantified, high-resolution imaging of tissue stiffness,” said Rowan W. Sanderson, first author of the paper. “This could make it easier to detect and remove all the cancerous tissue during the first breast conserving surgery, which would reduce the physical and psychological burden and cost that accompanies re-excision.”

Turning Touch Into Images

The finger-mounted probe uses a technique called quantitative micro-elastography (QME) to translate the sense of touch into high-resolution images. QME uses measurements from an optical imaging technique called optical coherence tomography (OCT), which generates high-resolution, depth-resolved images of tissue structure by measuring the reflections, or ‘echoes,’ of light.

To use the device, the finger-mounted probe is pressed perpendicularly into the tissue while OCT images are recorded. “By preserving the sense of touch, we aim to conserve the existing clinical workflow and increase the likelihood that this technology would be adopted for wider clinical use,” said Sanderson.

For accurate elasticity measurements, the researchers developed new signal processing methods with custom algorithms to deal with inconsistent motion and pressure during scanning. 3D printing helped them quickly produce prototypes of the probe’s outer casing in a simple and cost-effective manner.

“Our finger-mounted probe can accurately detect microscale changes in stiffness, which are indicative of disease,” said Sanderson. “The small size makes it ideal for imaging in confined spaces such as a surgical cavity.”

Share

Print


Suggested Items

DARPA Program Aims to Extend Lifetime of Quantum Systems

01/19/2018 | DARPA
Whether it is excited electrons emitting photons in a lightbulb or the vibrational frequency of atoms in an atomic clock, quantum phenomena are simultaneously fundamental aspects of nature and the basis of current state-of-the-art and future technologies.

DARPA’s Drive to Keep the Microelectronics Revolution at Full Speed Builds Its Own Momentum

08/28/2017 | DARPA
To perpetuate the pace of innovation and progress in microelectronics technology over the past half-century, it will take an enormous village rife with innovators. This week, about 100 of those innovators throughout the broader technology ecosystem, including participants from the military, commercial, and academic sectors, gathered at DARPA headquarters at the kickoff meeting for the Agency’s new CHIPS program, known in long form as the Common Heterogeneous Integration and Intellectual Property (IP) Reuse Strategies program.

Beyond Scaling: An Electronics Resurgence Initiative

06/05/2017 | DARPA
The Department of Defense’s proposed FY 2018 budget includes a $75 million allocation for DARPA in support of a new, public-private “electronics resurgence” initiative. The initiative seeks to undergird a new era of electronics in which advances in performance will be catalyzed not just by continued component miniaturization but also by radically new microsystem materials, designs, and architectures.



Copyright © 2019 I-Connect007. All rights reserved.