Flexible Hybrid Electronics Design: Reducing Time to Market


Reading time ( words)

Emerging innovations in the flexible hybrid electronics (FHE) domain are enabling new applications across multiple industries due to their highly flexible structures and additive manufacturing processes. The smaller form factor, lighter weight, and conformal capabilities are ideal for IoT edge devices in health and fitness monitoring, military asset identification and tracking, automotive displays and sensors, aerospace radar, and soft robotics. Significant industry research led by NextFlex is optimizing the processes from design through manufacture for FHE products.

FHE devices provide ideal solutions for many of today’s conformal electronics needs. They allow for the implementation of SWaP-C (size, weight, power, and cost) improvements over their more traditional counterparts. Because these FHE devices bend and flex, however, the design process takes on more of an electromechanical approach. The final product application dictates certain features, such as static or dynamic bending, component placement, and material choices. Moreover, non-conventional flexible substrates and printed conductors require more extensive RF simulation and characterization, unique to each manufacturing process. Without proper tools or experience, these features can instead become detriments that lead to longer design cycles and increased costs. In this article, we will dive into the basics for FHE design and its requirements.

We will discuss the tools NextFlex has developed to simplify the design process, shortening development cycles and ultimately time to market, and we will share how NextFlex and its consortium members from across the ecosystem are coming together to create materials databases and process development kits (PDK). We will describe how the materials and process database, FHE PDKs, reference designs, and managed reuse blocks are part of a new design process vision that promises to streamline FHE design and manufacturing.

Finally, we’ll talk about how, through these efforts, new FHE reference designs are emerging, and how we’ll be using these along with other reference modules to come up with a truly plug-and-play approach to FHE that reduces the amount of time and effort it takes to manufacture and design FHEs.

The Many Considerations When Designing for FHE
When it comes to designing FHE, its application drives the design considerations for the device as both a mechanical and electronic system. These considerations involve an interrelated set of choices based on application, environment, materials, process, and encapsulation.

FHEs have a wide variety of applications; for example, medical bandages that monitor vital statistics, monitoring systems for helicopter rotor blades, security tokens embedded into uniforms, and armbands that warn when a toxic gas concentration is too high. A primary question is whether the application will require a static bend form factor, where we apply the device and it stays as is, or will it be in dynamic, bending, and flex situations.

Then we need to look at the environment where these devices will be deployed. Are they being deployed in the middle of the desert, out on rough seas, in a cockpit above 30,000 feet, or is it on its way to the International Space Station?

To read the entire article, which appeared in the March 2022 issue of Design007 Magazine, click here.

Share




Suggested Items

The Chip Shortage Leads to Innovation

10/03/2022 | Malcolm Thompson, NextFlex
The chip shortage is by no means over, with estimates expecting it will last into 2023. Some could see it taking even longer, such as Intel CEO Pat Gelsinger, who expects it to see shortages into 2024 due to those now impacting electronics production equipment. But if there’s any bright spot to be had, it’s that a crisis often leads to long-term solutions. In this case, it’s the increase in government funding for semiconductor production in the United States. Once the CHIPS Act proceeds, we can significantly accelerate building semiconductor fabs in the United States and work toward preventing future chip shortages that would put us back into our current situation.

All Flex Discusses Merger and New Medical Applications

11/19/2021 | Nolan Johnson, I-Connect007
I recently spoke with Jamin Taylor, vice president of sales and marketing at All Flex Flexible Circuits in Minnesota. We discussed the company’s recent merger with Printed Circuits Inc., and some creative new flex applications, including flexible heaters and catheters for the medical field. As Jamin explains, "It’s always interesting to see different technologies amongst different companies. We’re working on a few new applications and products, like being able to do some fine lines and flex materials, but with large format, a longer format than usual. Some of their capabilities with lasering and fine features really help with our long flex capability; when we merge the two, we see a new market being created for that technology."

I-Connect007’s Latest Innovation: Joe Fjelstad’s E-Workshop on Flexible Circuits

09/09/2020 | Pete Starkey, I-Connect007
Denied the prospect of physically attending conferences, symposia, or live workshops by travel and social-distancing restrictions, Pete Starkey welcomed the opportunity to enjoy a privileged preview of I-Connect007’s latest innovation in technical webinars: a series of e-workshops on flexible circuit technology with the industry’s leading authority—Joe Fjelstad.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.