Flexible Hybrid Electronics Design: Reducing Time to Market


Reading time ( words)

Emerging innovations in the flexible hybrid electronics (FHE) domain are enabling new applications across multiple industries due to their highly flexible structures and additive manufacturing processes. The smaller form factor, lighter weight, and conformal capabilities are ideal for IoT edge devices in health and fitness monitoring, military asset identification and tracking, automotive displays and sensors, aerospace radar, and soft robotics. Significant industry research led by NextFlex is optimizing the processes from design through manufacture for FHE products.

FHE devices provide ideal solutions for many of today’s conformal electronics needs. They allow for the implementation of SWaP-C (size, weight, power, and cost) improvements over their more traditional counterparts. Because these FHE devices bend and flex, however, the design process takes on more of an electromechanical approach. The final product application dictates certain features, such as static or dynamic bending, component placement, and material choices. Moreover, non-conventional flexible substrates and printed conductors require more extensive RF simulation and characterization, unique to each manufacturing process. Without proper tools or experience, these features can instead become detriments that lead to longer design cycles and increased costs. In this article, we will dive into the basics for FHE design and its requirements.

We will discuss the tools NextFlex has developed to simplify the design process, shortening development cycles and ultimately time to market, and we will share how NextFlex and its consortium members from across the ecosystem are coming together to create materials databases and process development kits (PDK). We will describe how the materials and process database, FHE PDKs, reference designs, and managed reuse blocks are part of a new design process vision that promises to streamline FHE design and manufacturing.

Finally, we’ll talk about how, through these efforts, new FHE reference designs are emerging, and how we’ll be using these along with other reference modules to come up with a truly plug-and-play approach to FHE that reduces the amount of time and effort it takes to manufacture and design FHEs.

The Many Considerations When Designing for FHE
When it comes to designing FHE, its application drives the design considerations for the device as both a mechanical and electronic system. These considerations involve an interrelated set of choices based on application, environment, materials, process, and encapsulation.

FHEs have a wide variety of applications; for example, medical bandages that monitor vital statistics, monitoring systems for helicopter rotor blades, security tokens embedded into uniforms, and armbands that warn when a toxic gas concentration is too high. A primary question is whether the application will require a static bend form factor, where we apply the device and it stays as is, or will it be in dynamic, bending, and flex situations.

Then we need to look at the environment where these devices will be deployed. Are they being deployed in the middle of the desert, out on rough seas, in a cockpit above 30,000 feet, or is it on its way to the International Space Station?

To read the entire article, which appeared in the March 2022 issue of Design007 Magazine, click here.

Share




Suggested Items

FCT: Powerful Growth in the Flex Segment

08/31/2022 | Andy Shaughnessy, I-Connect007
After the initial impact of the global pandemic led to a somewhat flat 2020, Carey Burkett, vice president of Flexible Circuit Technologies, explains how the company’s growth took off in 2021, positioning it well for industry trends that continue to show great promise in medical, automotive, consumer, and more. In this interview, Carey breaks down the reasons behind the company’s recent success and how R&D, and a new Zhuhai facility, have positioned them for continued growth.

Just Ask Tara Dunn: Why Don’t Fabricators Provide More Feedback to Designers?

11/10/2020 | I-Connect007 Editorial Team
First, we asked you to send in your questions for Happy Holden, Joe Fjelstad, John Mitchell, and others in our “Just Ask” series. Now, it’s Tara Dunn’s turn! Tara is the vice president of marketing and business development for Averatek. A regular Flex007 columnist, Tara discusses flexible circuits, rigid-flex, and rigid PCBs, as well as RF/microwave technology, microelectronics, and additive processes. She is also co-founder of Geek-a-Palooza and a show manager for the SMTA Additive Electronics TechXchange event. She has over 20 years of experience in the PCB industry. We hope you enjoy “Just Ask Tara.”

Multi-board Etching: Managing Rigid-Flex Designs and Conductivity

04/01/2020 | Hemant Shah, Cadence Design Systems
Good troubleshooting techniques involve considering a system as individual parts rather than as a whole. The same techniques apply to your work with multi-board PCB designs. Each board consists of a single unit that has its own lifecycle. Some product designs may use a single PCB design for multiple functions or for multiple devices. Others may interconnect multiple PCB designs to produce a complete, fully functional system.



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.