Powering the Flexible World


Reading time ( words)

From 2019 we will come to a world with flexible electronics and batteries to power these devices have attracted tremendous attention. These devices may require batteries with special mechanical properties or form factors.

Flexible Displays are Being Addressed Further

In 2018, the OLED industry will be worth $25.5Bn, rising to $30.3Bn in 2019. Over $15Bn has been invested in the OLED display industry from 2016 to 2018 with panel makers mainly based in China, Korea, Japan and Taiwan. The investment is coming from the need to differentiate products with better screens and new form factors, with plastic based OLEDs becoming the norm (in rigid format) leading to truly flexible OLED displays - foldable displays being the first commercial example of that.

flex1.jpg

Flexible displays from (left) Visionox and (right) BOE. Source: IDTechEx

Flexible displays require innovations from all their components, from the front panel, to the backplane, to the encapsulation. These innovations expand their capabilities and enable a world with flexible electronics.

Power Solution is Another Piece of Puzzle in this Flexible World

A significant portion of flexible electronics will be portable and battery is always one of the limiting factors in the development of portable devices. We all have the experience that our smart phone batteries cannot last for long enough and they have to be recharged daily or even more frequently.

From lead acid, nickel-cadmium, to nickel-metal-hydride and lithium-ion batteries, the development of the electrochemical energy storage device is slow. Lithium-ion batteries, as the mostly successful commercial battery system nowadays, have been widely used in laptops, mobile phones, tablets and electric vehicles. However, the development of battery technology does not follow Moore's Law as transistors and the improvement is very slow, which is due to the intrinsic limitations.

Now, we have proposed another requirement for the battery—we want to have flexible batteries to fit into flexible electronic devices. This makes the task even more challenging. However, the potential new form factors can enable more flexible arrangement of the batteries. For instance, if a battery can be curved or folded, a larger battery can be fit into the device and larger battery in general can last longer.

Complex landscape to navigate, both from technology and market point of view

There are in principle three big requirements:

  1. The batteries should be safe
  2. The batteries need to last longer/offer higher power
  3. The batteries should provide special form factor or flexibility

To tackle these targets players are approaching from two different angles. They can start from traditional electrochemistry and explore new value propositions, or they can start from the special properties and form factors and increase their performance.

Therefore, we can see various technologies on the market. The marketing terms make integrators and end users more difficult to assess them. We can see batteries are categorized based on their mechanical properties, such as flexible batteries, stretchable batteries, rollable batteries, bendable batteries, foldable batteries. Batteries are classified by technology, including solid state batteries, lithium manganese batteries, alkaline batteries, silver zinc batteries, nickel-metal hydride battery. Their special form factors make cable batteries, needle batteries, micro-batteries and large-area batteries available. To address the manufacturing method, "printed batteries" show up in the press release quite often.

Share


Suggested Items

EIPC 50th Anniversary Conference Day 2: The Past, the Present and the Future, Pt. 1

07/09/2018 | Pete Starkey, I-Connect007
The sun was shining in Dusseldorf as delegates returned to the conference room for the second day of the EIPC 50th Anniversary Conference. There were very few empty chairs—even those who had enjoyed a late networking session in the hotel bar had taken their seats as Paul Waldner opened the proceedings with Session 5, on a theme of future PCB design, material and processes for the PCB supply chain.

Experts Discussion with John Talbot, Tramonto Circuits

06/06/2018 | I-Connect007 Editorial Team
For this first issue of Flex007 Magazine, we interviewed John Talbot, president and owner of Tramonto Circuits. Headquartered in metro Minneapolis, Minnesota, Tramonto manufactures flexible and rigid PCBs for a variety of industry segments. Editors Andy Shaughnessy, Patty Goldman and Stephen Las Marias asked John to discuss the challenges and opportunities in the world of flexible circuits, and some of the trends he’s seeing in this market.

Experts Discussion: The Flex Technologists Speak

06/05/2018 | I-Connect007 Editorial Team
For our first issue of the Flex007 Magazine, we invited a group of flexible circuit experts to discuss their work in this rapidly growing segment. Participants included Jonathan Weldon of DuPont, Mark Finstad of Flexible Circuit Technologies, and Scott McCurdy and Scott Miller of Freedom CAD. In a free-wheeling discussion with Andy Shaughnessy and Barry Matties, these technologists share their thoughts on the challenges and opportunities in flexible circuits, as well as what constitutes the cutting edge of flex right now.



Copyright © 2018 I-Connect007. All rights reserved.