Flex Time: Why is Rigid-Flex So Expensive?


Reading time ( words)

One question that I hear fairly often, particularly after an initial quotation, is “Why is rigid-flex so expensive?” In this article, I’ll share with you the cost drivers in rigid-flex relative to standard rigid boards and flex circuits with stiffeners. A typical rigid-flex PWB will cost about seven times the cost of the same design on a hard board, and two to three times an equivalent flex circuit with stiffeners. A good way to estimate the cost of rigid-flex board in low-level production quantities is 35 to 40 cents per square inch, per layer. So, if you have an eightlayer board that measures 4” x 6”, your costing would look like this:

8 layers x 4” x 6” x $0.40/sq.in. = $ 76.80 each

Again, this applies only to low level production quantities. This is a helpful calculation for getting a quick, rough idea of what your part might cost as a rigid-flex. Rigid-flex PWBs cost quite a bit more, primarily because of the higher cost of the raw materials we use to build them, relative to standard rigid boards or even flex boards. The number one cost driver is the no-flow prepreg. Rigid-flex manufacturers have to use no-flow, or sometimes low-flow prepreg, so that the resin does not flow out onto the flexible areas of the board. No-flow prepregs are designed to offer just enough flow to fill the circuits in the hardboard areas, but not enough to flow out onto the flexible areas of the boards.

No-flow and low-flow prepregs run from $1.50 to $3 per square foot. Conventional rigid board high-flow prepregs run around $.25 per square foot, so there is a large differential in price just for the prepreg. A couple of other things contribute to the cost as well. No-flow prepreg is only available in 1080 and 106 glass cloth styles, which typically press out at .0025” and .002” respectively, so they are thin. Rigid-flex manufacturers don’t have 2113, 2116, 7628 glass styles available to manufacture your board. It is wise to use two plies of prepreg between layers within your construction. The no-flow resin resists flowing, so to assure adequate fill, we use two plies of prepreg between each layer.

To read the full version of this article which appeared in the April 2018 issue of Flex007 Magazine, click here.

Share

Print


Suggested Items

Decreasing Bend Radius and Improving Reliability- Part III

12/18/2019 | Kelsey Smith, All Flex
Application: Design guidelines to improve the flexibility and reliability of flexible circuits. Most issues that arise with flex circuits can be eliminated in the early stages of the design phase, and special planning must occur when the circuit is required to bend. Many novices will design a circuit that calls for bending the flex in too tight of a bend radius, which can cause damage to the circuit and lower the reliability of the end product.

Flex Standards Update With Nick Koop

11/21/2019 | Andy Shaughnessy, Design007 Magazine
This month, I interviewed Nick Koop—director of flex technology at TTM Technologies, a veteran “flex guy” and instructor, and a leader of several IPC flex standards committees. Nick provides an update for the committees he’s involved with and discusses some of the challenges that he sees as more designers enter the world of flex.

Decreasing Bend Radius and Improving Reliability—Part I

10/11/2019 | Kelsey Smith, All Flex
Many of the issues that arise when using a flex circuit come from a lack of knowledge about how to properly design one, especially when the circuit is required to bend.



Copyright © 2020 I-Connect007. All rights reserved.