Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals


Reading time ( words)

Cover Layer Requirements Not Properly Called Out or Defined

Coverlayer and cover coat are terms normally reserved for flexible circuit constructions and they are by default a defining structural element of both flex and rigid flex circuits. Coverlayers serve as a flexible solder mask of sorts, protecting the delicate circuits from damage and potential wicking of solder along circuit traces, while leaving open access to design features where interconnections are to be made to components by soldering.

It is important to determine the thickness of a coverlayer to allow for maximum flexibility when desired, and ensure you have chosen a coverlayer with a sufficient amount of adhesive on it to accommodate the copper weight. Coverlayers are also of importance in the design of areas where the circuit is to be bent either just one time, intermittently, or dynamically, millions or even billions of times over its useful life. The latter case, the dimensions and make of the flexible circuit coverlayer is critical. In dynamic flex circuits, there is need to balance the amount of flexible materials on the sides of the conductors where flexing is to occur. It is important to know and understand that there are different types of materials available for use as coverlayer materials, and that there is no single, ideal solution. These material choices include: materials that are laminated to the copper circuits using heat and pressure; materials that can be laminated and then pho toimaged, like solder mask, to define points of connection; and materials that are simply screen printed on to seal traces, while leaving open features of interest for further processing or for making interconnections.

Number of Flex Layers

The clear majority of flexible circuits have just one or two metal layers. However, an increasing number of high-performance products now require high layer counts and high density interconnect (HDI) design techniques. As layer count increases, so does the need for control in design generation to accommodate manufacturing process realities. It is also worth noting, while on the topic of layer count, that stiffness increases as a cube of thickness. That is, if one doubles its thickness, the stiffness goes up eightfold (23 = 8), and thus small increases in thickness due to increases in layer count can greatly decrease circuit flexibility. The converse is also true, of course. The following are some key concerns to be understood and addressed in the design process relative to flex layer count.

As is the case with any multilayer construction, core thickness must be provided with the assumption that copper is clad on at least one surface.  The core thickness is generally understood to be the thickness of the dielectric material between the copper layers. The core material can be a simple single-sided piece of copper clad polymer, or it can be clad with copper on both sides.  Many different core thicknesses are commonly available for flexible circuits, but the most common is 75 mm, typically comprised of 25 mm of base polymer (e.g., poly imide, polyester) with 25 mm of adhesive (e.g., acrylic, modified epoxy) on either side to bond copper foil to the surface of the base polymer. Thinner and thicker core materials can be procured both with and without adhesive. It is recommended that designers check with their flex vendors for both their recommendations and the availability of the chosen material.

While the discussion so far been limited to flexible circuit core material, rigid materials are employed in the fabrication of rigid-flex circuits. Of course, any of the myriad core materials used in rigid multilayer circuits are also available to make rigid-flex circuits. However, once again, it is advisable to check with the flex manufacturer for advice as to what options are most common and readily available.   

Separation Distance Between Flex Circuit Cores

When a product requires two or more cores, there is a need to define in the specification what the spacing requirements are between cores. The spacing can impact product performance (physical and electrical) and, most obviously, thickness. In some designs, the spacing between flex circuit cores may be filled with dielectric material, but with other designs the dielectric between flex cores in the flex area may be omitted to assure maximum flexibility (Figure 2).

FlexConsFig2.jpg 

Figure 2: Bonded vs. unbonded flex.

If the core layers must be unbonded, this should be noted in the documentation. Those areas where bonding is to be avoided should be identified in the design artwork package. The unbonded areas must have a coverlayer applied to each exposed side (Figures 2 and 3). In laminated areas, it is not required and arguably a liability when plated through-hole reliability through the assembly process is considered.  Obviously, in areas where interconnection is required between multiple layers of internal circuits, a dielectric is required as shown in Figure 2. In the next installment we will continue this three-part series by addressing circuit layup symmetry, designing for bending, and controlled impedance.

Dave Lackey is vice president of business development at American Standard Circuits.

Anaya Vardya is CEO of American Standard Circuits.

This article originally appeared in the April 2018 issue of Flex007 Magazine, click here.

Share


Suggested Items

Managing the Challenges of Flex and Rigid-Flex Design

09/12/2018 | Dave Wiens, Mentor, a Siemens Business
PCB designers working with flex or rigid-flex technology face many potential risks that can derail a project and cause costly design failures. As the name implies, flex and rigid-flex designs comprise a combination of rigid and flexible board technologies made up of multiple layers of flexible circuit substrates, attached internally and/or externally to one or more rigid boards. These combinations provide flexibility for the PCB designer working on dense designs that require a specific form factor. Rigid-flex allows the PCB design team to cost-efficiently apply greater functionality to a smaller volume of space, while providing the mechanical stability required by most applications.

Mark Thompson: What Designers Need to Know about Fab

06/08/2018 | Dan Beaulieu, D.B. Management Group
Mark Thompson wants to help PCB designers. He’s seen it all in CAM support at Prototron Circuits: the incomplete or inaccurate data packages, boards that are unnecessarily complex or over-constrained, and so much more. Mark just returned to writing his popular Design007 Magazine column, The Bare (Board) Truth, which addresses questions such as, “What happens to your design at CAM?” I asked Mark to explain why it’s so important for designers to communicate with their fabricators, and why they need to get out of the office and visit a board shop every now and then.

Jan Pedersen: CircuitData Enhances Current Data Formats

04/11/2018 | I-Connect007 Editorial Team
During the Design Forum at IPC APEX EXPO 2018, Jan Pedersen, senior technical advisor for the PCB broker Elmatica, gave a presentation on CircuitData. The language is designed to help facilitate other design data transfer formats such as Gerber, ODB++, and IPC-2581. Jan spoke with Managing Editor Andy Shaughnessy and Contributing Technical Editor Happy Holden about how this open language works with the existing data formats, as well as the need to eliminate paper documents from design process, and how the industry can help shape this open-source language.



Copyright © 2018 I-Connect007. All rights reserved.